

ALLOYS
AND COMPOUNDS

Journal of Alloys and Compounds 223 (1995) 65-69

Crystal structure of Ag₇Ca₂ − a new intermetallic structure type th

G. Jeffrey Snyder *, Arndt Simon **

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Received 19 September 1994

Abstract

Single crystals of Ag_7Ca_2 were grown and examined without the application of mechanical stress. The crystal structure was solved by single-crystal X-ray diffraction. Ag_7Ca_2 is orthorhombic, space group Cmcm, a = 9.478(2) Å, b = 5.525(1) Å, c = 14.079(2) Å, Z = 4, R = 0.034, with a simple new structure type containing Kagomé nets of silver atoms, surrounded by hexagonal and triangular nets of silver and calcium atoms. These layers are then stacked as in hexagonal close packing. Predicted mechanical properties are discussed briefly. The c-axis conductivity of Ag_7Ca_2 , measured as a function of temperature on a single crystal, approaches that of silver metal.

Keywords: Crystal structure; X-ray diffraction; Silver; Calcium

1. Introduction

In a recent paper [1] we reported that the compound previously known [2] as Ag₈Ca₃ is actually a nitride with composition Ag₁₆Ca₆N. To verify this, we repeated the synthesis in the absence of nitrogen. We did not find any evidence of Ag₈Ca₃, but instead we were able to grow single crystals of Ag₇Ca₂, having a previously unknown intermetallic structure type. The structure is remarkably simple: slightly distorted hexagonal layers form close packed slabs which are stacked AB as in hexagonal close packing of spheres.

The alloys of silver and calcium have been studied extensively. Early powder X-ray diffraction work [3,4] indicated an intermetallic phase of nominal composition Ag₃Ca with an f.c.t. cell. Thermodynamic investigations of the Ag-Ca phase diagram [5-7] have indicated the presence of phases with compositions AgCa₃, Ag₃Ca₅, AgCa, Ag₂Ca₂, Ag₇Ca₂, and Ag₉Ca₂. Ag₇Ca₂ melts congruently at 731 °C, as seen by a maximum in the liquidus curve at this composition. The compositions for Ag₇Ca₂ and Ag₉Ca₂ were apparently confirmed from the size of the unit cell in single-crystal X-ray diffraction examinations, and they replace the compositions Ag₃Ca

and Ag₄Ca reported in previous literature. The reported diffraction pattern [3] of Ag₃Ca, however, does not conform to the structure of Ag₇Ca₂ reported here or to that of Ag₁₆Ca₆N.

Single-crystal structure analyses have been done for Ag_3Ca_5 [8], AgCa [9], and Ag_2Ca [10] as well as ' Ag_8Ca_3 '. The approximate hexagonal cell for Ag_7Ca_2 (a=5.50 Å, c=14.10 Å, provisional space group $P6_322$) was mentioned by Villars and Calvert [11]. The compound Ag_7Yb_2 [12] is reported to have the same structure as Ag_7Ca_2 .

2. Experimental

2.1. Synthesis following Refs. [1,2]

Distilled calcium metal (0.1297 g) and silver shot (0.9968 g) were melted together in a tantalum crucible at 750 °C under 1 atm purified argon. Cooling to 700 °C, the argon pressure was reduced to 15 mbar. After 5 days at 700 °C, some of the metal had transported above the main molten sample, forming needle-shaped crystals which grew radially inward from the walls of the tantalum crucible. These crystals were as long as several millimeters along [001], and were used for structure determination as well as conductivity exper-

^{*} Dedicated to the late Professor H.-U. Schuster.

^{*} Present address: Department of Applied Physics, Stanford University, Stanford CA 94305, USA.

^{**} Corresponding author.

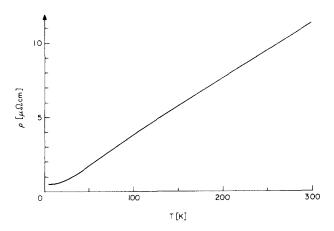


Fig. 1. c axis resistivity of Ag₇Ca₂.

iments. The remaining sample was very malleable and therefore complicated X-ray powder diffraction. The few reflections observed coincide with those of Ag₇Ca₂. An argon dry box was used when manipulating samples.

2.2. Electrical resistivity

The crystals of Ag_7Ca_2 are not noticeably reactive with the atmosphere over long periods (1 year), and therefore the sample for conductivity measurements was prepared in air. Silver epoxy paste was used for making contacts to a 1.5 mm \times 0.025 mm \times 0.025 mm needle at four positions along its length, with the voltage contacts 0.2 mm apart. Cooling and warming curves of the d.c. resistivity (I=10 mA) are given in Fig. 1.

2.3. X-ray diffraction

22 reflections in the θ range $8.5^{\circ}-29^{\circ}$ were used for cell determination. The crystal structure was solved by direct methods and refined using SHELXL-93 and related software [13]. The absorption was calculated empirically using Ψ -scans with a laminar (100) model of the crystal shape with a 3° 'take off angle'. Additional correction for primary and secondary extinction was also necessary. Details of the single-crystal data collection are summarized in Table 1, the final atomic positional parameters, anisotropic thermal parameters and selected bond lengths are given in Tables 2, 3 and 4.

The orthorhombic unit cell constants for Ag_7Ca_2 differ by only 1.0% from an orthohexagonal cell $(b=a\sqrt{3})$. The structure does not refine using hexagonal space groups, and as discussed below contains an inherent asymmetry requiring an orthorhombic cell.

3. Results

3.1. Crystal chemistry

The molar volume of Ag₇Ca₂ is 89.2% that of the respective metals, which is consistent with the other

three Ag-Ca phases whose crystal structures are known; they have molar volumes 89.0%-90.1% that of the pure metals.

The octahedral void produced by the close packing described below is slightly smaller than that required for a nitrogen or carbon atom. However, there is no crystallographic or chemical evidence for a non-metal atom at this site.

3.2. Description of structure

Ag₇Ca₂ contains two types of layer perpendicular to the c direction which are again only 1% off from having hexagonal symmetry. Two Ag(1) and four Ag(2) atoms lie in the same plane in a Kagomé net which forms an Ag₆ layer, with respect to the unit cell, shown in Fig. 2. Located above (and below) the triangles of the Kagomé net are the Ag(3) atoms which themselves form a hexagon net. Nearly coplanar with this net is a larger mesh triangular net of calcium atoms positioned directly above (and below) the center of each hexagon of the Kagomé net. These Ag(3) and calcium atoms together form a close-packed smaller mesh triangular layer, shown in Fig. 3, with stoichiometry of Ag₄Ca₂ per unit cell. The stacking of the layers is in general ...[Ag_4Ca_2][Ag_6][Ca_2Ag_4]..., where each [Ag_4Ca_2][Ag_6]-[Ca₂Ag₄] slab has essentially close-packed atoms on both surfaces. The large calcium atoms in the [Ag₄Ca₂] layers are depressed inward toward the Ag₆ layer providing a 'smoother' surface to the slabs.

Owing to the close-packed nature of the slab surfaces, adjacent slabs are quite naturally shifted 1.97 Å along b (Fig. 4), to approximately the center of the triangular depression (1.83 Å away) in the neighboring slab. Alternating slabs have the same orientation, that is ABAB (hexagonal close packing) stacking sequence of triple layer $[Ag_4Ca_2][Ag_6][Ca_2Ag_4]$ slabs.

4. Discussion

In the notation of Pearson [14], the Kagomé net (6363) of the Ag_6 layer is represented by α , the triangular net (36) of calcium by A, and the hexagon net (63) of Ag(3) by a. The $[Ag_4Ca_2][Ag_6][Ca_2Ag_4]$ slabs have $(a\underline{A})\alpha(\underline{A}a)$ (the calcium layers are underlined) stacking which is essentially the same coordination as that found in $CaCu_5$, $(a\underline{A})\alpha$. In $CaCu_5$ the $(a\underline{A})$ layers are coplanar. Indeed, Ag_7Ca_2 has a condensed $\overline{CaCu_5}$ structure where every other α layer is removed. Other phases with the same stoichiometry, Ce_2Ni_7 and Er_2Co_7 , develop a complicated layer pattern combining $CaCu_5$ -type layers $(a\underline{A})\alpha$ with those of the Laves phase $MgZn_2$, $\alpha(\underline{ABC})$, to make sequences of the type $\alpha(a\underline{A})\alpha(a\underline{A})\alpha(\underline{ABC})$. The translation along b, of approximately one-third of the hexagonal base, is 90° from the typical translation

Table 1 Crystal data and structure refinement for Ag₇Ca₂

Diffractometer type	Siemens R3m/V
Monochromator	Graphite
Empirical formula	Ag_7Ca_2
Formula weight	835.25
Temperature (K)	293(2)
Wavelength (Å)	0.71073
Crystal system	Orthorhombic
Space group	Cmcm (No. 63)
Unit cell dimensions	$a = 9.4784(18) \text{ Å}, \ \alpha = 90^{\circ}$
	$b = 5.5251(7) \text{ Å}, \ \beta = 90^{\circ}$
	$c = 14.0790(15) \text{ Å}, \ \gamma = 90^{\circ}$
Volume (Å ³)	737.3(2)
Z	4
Density (calculated) (g cm ⁻³)	7.525
Absorption coefficient (mm ⁻¹)	19.476
F(000)	1476
Crystal size (mm)	$0.04 \times 0.08 \times 0.36$
θ range for data collection (deg)	2.89–27.49
Index ranges	$-12 \le h \le 12, \ 0 \le k \le 7, \ 0 \le l \le 18$
Reflections collected	815
Independent reflections	$451 \ (R_{\rm int} = 0.0325)$
Refinement method	Full-matrix least-squares on F^2
Data, restraints, parameters	451, 0, 27
Goodness-of-fit on F^2	1.062
Final R indices $(I > 2\sigma(I))$	$R_1 = 0.032, \ w_{R2} = 0.079$
R indices (all data)	$R_1 = 0.034, \ w_{R2} = 0.081$
Extinction coefficient	0.069(3)
Largest diffraction peak and hole (eÅ-3)	2.323 and -2.710

Table 2 Atomic coordinates and equivalent isotropic displacement parameters $(\mathring{A}^2 \times 10^4)$ for Ag₇Ca₂; U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor

Atom	Wyckoff position	x	y	z	U(eq)
Ca	8f	0	0.3219(2)	0.11471(12)	130(4)
Ag(1)	4c	0	0.82668(11)	1/4	108(4)
Ag(2)	8g	0.25088(5)	0.07750(8)	1/4	110(3)
Ag(3)	16h	0.33475(5)	0.32926(7)	0.07649(3)	140(3)

Table 3 Anisotropic displacement parameters $[\mathring{A}^2 \times 10^4]$ for Ag₇Ca₂; the anisotropic displacement factor exponent takes the form $-2\pi^2$ $[(ha^*)^2U_{11} + \cdots + 2hka^*b^*U_{12}]$

Atom	<i>U</i> ₁₁	U ₂₂	U_{33}	U_{23}	<i>U</i> ₁₃	U ₁₂
Ca	129(9)	120(8)	142(9)	-2(5)	0	0
Ag(1)	64(5)	109(5)	151(5)	0	0	0
Ag(2)	108(5)	73(4)	150(5)	0	0	-27(2)
Ag(3)	153(5)	144(4)	122(4)	2(1)	-4(1)	-13(1)

vector found in compounds with such layers, which we will denote as \mathbb{Z} , z, and ζ . The structure of $\operatorname{Ag_7Ca_2}$ is then represented by $(a\mathbb{A})\alpha(\mathbb{A}a)(z\mathbb{Z})\zeta(\mathbb{Z}z)$.

It is the distinguishability of the calcium and silver atoms in the close packing layers that breaks the

Table 4 Selected bond lengths (Å) for Ag_7Ca_2

CaCa	×1	3.782(3)
Ca-Ca	×1	3.810(3)
Ca-Ag(1)	×1	3.3337(14)
Ca-Ag(1)	×1	3.378(2)
Ca-Ag(2)	×2	3.3325(12)
Ca-Ag(2)	×2	3.3465(12)
Ca-Ag(3)	×2	3.1859(12)
Ca-Ag(3)	×2	3.2184(8)
Ca-Ag(3)	×2	3.224(2)
Ca-Ag(3)	×2	3.2562(12)
Ag(1)-Ag(2)	×2	2.7333(7)
Ag(1)-Ag(2)	×2	2.7523(7)
Ag(1)-Ag(3)	×4	2.9020(5)
Ag(2)-Ag(2)	×2	2.7626(4)
Ag(2)-Ag(3)	×2	2.9168(5)
Ag(2)- $Ag(3)$	×2	2.9214(5)
Ag(3)- $Ag(3)$	×1	2.8260(10)
Ag(3)-Ag(3)	×1	2.8631(9)
Ag(3)-Ag(3)	×1	3.1326(11)
Ag(3)-Ag(3)	×2	3.1957(6)

hexagonal symmetry when the layers are stacked ABAB (h.c.p.). It is impossible to stack (without having atoms eclipsed) a 6³ net on top of another which preserves the threefold symmetry; such a stacking is possible with Kagomé nets, as seen in Ni₃Sn. Thus each atom in a [Ca₂Ag₄] layer with local 3m symmetry must coordinate to a triangle consisting of one calcium and two silver

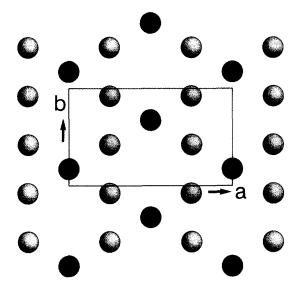


Fig. 2. Kagomé net of Ag(1) (lighter) and Ag(2) (darker) atoms, viewed along c. The unit cell is outlined in black.

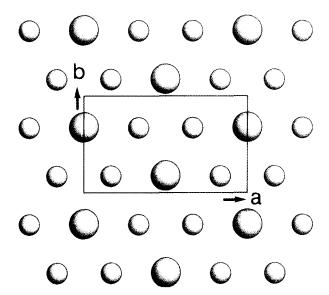


Fig. 3. 6^3 net of Ag(3) atoms (small) and 3^6 net of calcium atoms (large) making an [Ag₄Ca₂] layer, viewed along c. The unit cell is outlined in black.

atoms in the neighboring $[Ca_2Ag_4]$ layer, reducing the maximum possible symmetry to m. The slight orthorhombic distortion produced by this arrangement must be sufficient to enforce further stacking of the slabs along b. There are nine equally accessible orientations for $(a\underline{A})$ nets, Ag_7Ca_2 uses only two. The h.c.p. type stacking allows orthorhombic symmetry while c.c.p. (ABC) stacking would reduce the cell symmetry further to monoclinic.

The calcium atoms in Ag_7Ca_2 have coordination number (CN) 16. This results from a hexagon of six Ag(3) atoms at an average distance of 3.22(3) Å within the $[Ca_2Ag_4]$ layer, a hexagon of six Ag(1) and Ag(2) atoms at 3.35(2) Å in the adjacent Ag_6 layer, through the center of which is a calcium atom at 3.81 Å. On

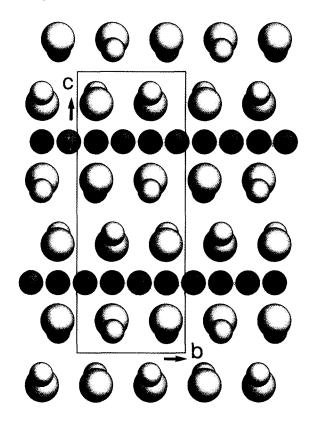


Fig. 4. Arrangement of $[Ag_4Ca_2]$ layers (darker atoms) and Ag_6 layers (lighter atoms) as viewed along a. The unit cell, outlined in black, contains two $[Ag_4Ca_2][Ag_6][Ca_2Ag_4]$ 'slabs', see text.

the opposite side is a triangle of two Ag(3) atoms at 3.225 Å and a calcium atom at 3.78 Å in the adjacent $[Ag_4Ca_2]$ layer.

All the silver atoms have distorted cubo-octahedral coordination (CN=12). The Ag(1) and Ag(2) atoms have essentially the same coordination sphere, four Ag(1) or Ag(2) atoms at 2.75(1) Å from within the Ag₆ layer, four Ag(3) at 2.91(1) Å and four calcium at 3.35(2) Å from the [Ca₂Ag₄] layers above and below. The Ag(3) atoms coordinate to three Ag(3) at 3.17(3) Å and three calcium at 3.23(3) Å from a hexagon within the [Ca₂Ag₄] layer, a triangle of two Ag(3) at 2.84(2) Å, one calcium at 3.22 Å from the neighboring [Ca₂Ag₄] layer, and a triangle of one Ag(1) and two Ag(2) at 2.91(1) Å from the other side. All of the atoms in Ag₇Ca₂ have interatomic distances comparable with those in other Ag–Ca intermetallics, as discussed previously in [1].

The other known structures in the Ag-Ca system have different layer structures and coordination than found in Ag₇Ca₂. AgCa has the BCr structure containing layers of Cr₆B trigonal prisms. Ag₃Ca₅ has the B₃Cr₅ structure. Ag₂Ca has the Cu₂Ce structure type made of $3^25^2+3^45$ (2:1) nets.

The Ag₅₁Gd₁₄ structure type [15–17] contains similar (3⁶) nets of gadolinium atoms coordinated to hexagon nets (6³) of silver atoms. Unfortunately, the structure

solution contains substantial disorder making it difficult to compare directly with Ag₇Ca₂.

From the simple layered structure of Ag₇Ca₂, it should be relatively easy for the close-packed slabs to slip in directions other than along b, namely directions at 60° from the b axis but still in the (001) plane. Such a crystal would give disordered atom positions. It is possible that the disordered nature of Ag₅₁Gd₁₄ and isostructural compounds results from such a slip mechanism. It is worth noting that the crystals reported in this work were used as grown and never exposed to any mechanical stress which is not usually the case for such compounds.

 Ag_7Ca_2 is a very good metal as shown by the linear character of the c axis resistivity as a function of temperature, and the low room temperature resistivity of approximately $10^{-5} \Omega$ cm compared with that of silver, $10^{-6} \Omega$ cm.

Acknowledgment

The authors wish to thank Dr. K. Peters, T. Gulden and N. Weishaupt for their help on this project, and the Hertz foundation for financial support.

References

- [1] G.J. Snyder and A. Simon, Angew. Chem., 106 (1994) 173;Angew. Chem. Int. Ed. Engl., 33 (1994) 689.
- [2] L.D. Calvert and C. Rand, Acta Crystallogr., 17 (1964) 1175.
- [3] C. Degard, Z. Kristallogr., 90 (1935) 399.
- [4] A. Iandelli, Rend. Semin. Fac. Sci. Univ. Cagliari, 19 (1949) 133–139.
- [5] N. Baar, Z. Anorg. Allge. Chem., 70 (1911) 352.
- [6] W.A. Alexander, L.D. Calvert, A. Desaulniers, H.S. Dunsmore and D.F. Sargent, Can. J. Chem., 47 (1969) 611.
- [7] M. Notin, Calphad, 6 (1982) 49.
- [8] R.P. Rand and L.D. Calvert, Can. J. Chem., 40 (1962) 705.
- [9] F. Merlo, J. Less-Common Met., 86 (1982) 241.
- [10] L.D. Calvert, H.S. Dunsmore, L.V. Kuhi and R.S. Tse, Acta Crystallogr., 10 (1957) 775.
- [11] P. Villars and L.D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, Metals Park, OH, 1985.
- [12] Palen, J. Less-Common Met., 21 (1970) 443.
- [13] G.M. Sheldrick, Program for crystal structure refinement, J. Appl. Crystallogr,. in preparation.
- [14] W.B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys, Wiley-Interscience, London, 1972.
- [15] A. Dommann and F. Hulliger, J. Less-Common Met., 141 (1988) 273.
- [16] D.M. Bailey and G.R. Kline, Acta. Crystallogr. B, 27 (1971) 650.
- [17] J.-P. Gabathuler, P. White and E. Parthé, Acta Crystallogr. B, 31 (1975) 608.